Aircraft Fire Hazards, Protection & Investigation

15-17 August 2017
Woburn MA, USA

Instructor:
Dr. N. Albert Moussa, P.E.

BlazeTech Corporation

Our services to the aircraft industry include R&D, testing, modeling and simulation, safety audits, consulting, accident investigation/reconstruction and expert witness, and product/technology assessment. Our products include a flash/fire discriminator; a variety of fire, explosion and structural damage software such as BlazeTank™ for fuel tank explosion analysis; FuelShield™ to protect fuel tanks against ullage explosion and hydrodynamic ram; and unique instrumentation to characterize aerosols and ash in flows (particles size, shape, temperature and mass flux). We provide customized training at client facility expanding on any subject matter in this course.

Course Developer and Main Lecturer

Dr. N. Albert Moussa, Technical Director of BlazeTech, has over 40 years of experience in fire and explosion in civilian and military aircraft. He authored one book on flammability and over 150 publications, presentations and reports. He has worked on small- and full-scale testing of aircraft materials, components and entire systems, fire and explosion modeling and the design fire detection and suppression systems. Since 1996, he has consulted on major aircraft fire/explosion accidents in the US and overseas. His forewarnings about aircraft fuel system vulnerabilities before the TWA800 and Concorde disasters have gained him prominence in the US and European media. His credentials include: William Lockwood Memorial Lecture Award, Engineer of the Year by the NE- AIAA Section, AIAA Distinguished Lecturer, Best Papers by SAE and ASEI, and several ASME citations. He served on national committees and was Associate Editor of an ASME Journal. He received his Bachelors degree (with Honors) from Stanford University and Masters/Doctoral degrees from MIT, with both dissertations focusing on fire.

Course Would Benefit:

Engineers, Managers, Accident Investigators, Safety Professional and Transport Specialists who are responsible for commercial/military aircraft, helicopters, or Unmanned Aerial Vehicles including design, operation, specifications, certifications, flight safety, cargo operations, field inspection, maintenance, repairs, materials, aircraft fluids, fire detection/suppression, protection equipment, bomb threats and security, survivability, vulnerability, Safety Management System, emergency response at airport, accident investigation, risk analysis and mitigation.

Course Schedule and Location

8:00 to 17:00 Tuesday-Thursday, 15-17 August 2017
BlazeTech Corporation
29 B Montvale Ave., Woburn, MA 01801 USA

Fee and Registration

Fee: $3,300. To register, fill out form below. Payments:
- Credit cards: fax to BlazeTech 781-759-0703
- Wire payments: contact us for details.
- Checks: mail to BlazeTech; discount $200. if check is received 1 month before course.
Registration is incomplete until payment is received.
No walk-ins. We will confirm course no later than 2 weeks before course starts. We reserve the right to cancel the course.

Registration Form

Name: ____________________________
Title/Position: ____________________________
Company: ____________________________
Address: ____________________________
City, State, Zip: ____________________________
Country: ____________________________
Phone/Fax: ____________________________
E-mail: ____________________________
Specific Interest: ____________________________

Payment: [] Check [] Credit Card [] Wire
Card #: ____________________________
Expiration Date: ___________ Amount: ___________
3- or 4-Digits Security Code on card: ___________
Name on Card: ____________________________
Signature: ____________________________ Date: ____________________________
Billing Address for Card: ____________________________

How did you hear about the course?
[] Colleague [] Website [] Email [] Other: ____________________________

Aircraft Fire Hazards, Protection & Investigation

15-17 August 2017
Woburn MA, USA
1. Flammability of Fuels, Oils and Hydraulics
- Current and alternate compositions (biofuels)
- Vapor pressure, flash/fire points
- Ignition and flame temperatures

2. Fuel Tank Fire and Explosion
- Ullage flammability and deflagration
- Predict fire/overpressure using BlazeTank
- N₂ inerting: 9% vs. 12% O₂
- Penetration/perforation by debris/bullet impacts
- SFAR 88: lessons learned (TWA 800, B747, New York)

3. Engine Fires
- Hot surface vs. auto ignition temperature tests
- Full-scale tests on AV8-B and simulated F-16
- Protection systems
- Engine failure (Dana Airlines, MD-83, JT8D, Nigeria)
- Uncontained engine failures (United, DC-10, CF6, Sioux City, IA; Qantas A388, A380, Trent 972, Bantam Island, Indonesia)
- Mechanical Failure (China Airlines 120, B737, CFM56, Okinawa, Japan)

4. Post-Crash Fires
- Pool fire and anti-misting fuel
- Incorrect runway during takeoff (Comair 5191, CRJ-100, Lexington, KY)
- Runway Excursion during landing (Air France 358, A340, Toronto, Canada)
- Impact (Asiana 214, B777, San Francisco, CA)
- Aborted takeoff (Continental 603, DC-10-10, Los Angeles, CA)

5. Flammability of Polymeric Materials
- Thermal degradation, ignition, flaming, smoldering, smoke, toxicity, flame retardants
- FAR 25.853 test methods
- Effects of pressure and oxygen concentration

6. Cabin Fires
- Breached fuselage during crash vs. burn-through
- Flammability of seats and panels
- Flashover (full scale FAA tests)
- Protection equipment
- Passenger evacuation (British Air tours 28M, B737, Manchester, UK)

7. Fires in Cargo and Hidden Areas
- Ventilation, smoke/fumes movement
- Wiring problems, causes, fixes and challenges
- Swiss Air 111, MD-11, Nova Scotia
- Thermal acoustic insulation
- TUPS 1307, DC-8, Philadelphia, PA
- Saudi, L1011, Riyadh, Saudi Arabia
- Combi, South African 295, B747, Mauritius, Indian Ocean
- United 95, B767, London, UK
- Pan Am 160, B707, Boston, MA

8. Flammability of Composite Structures
- Unique properties of composites
- Fire test methods
- Thermal degradation model
- Composites v. Aluminum structures
- Unmanned Aerial Vehicles

9. Li Battery Fires
- Battery essentials: primary and rechargeable cells
- Battery fire hazards
- Battery safety standards and testing
- Effectiveness of fire extinguishers
- Li-ion battery fire in Dreamliner (Japan 008, B787, Boston, MA)

10. Li- Battery Fires in Cabin
- Incidents involving PEDs and laptops
- Cell phone fire (Qantas 7, A380, SW of Dallas)
- Protection methods in cabin

11. Li- Battery Fires in Cargo
- UPS 6, B747, Dubai, United Arab Emirates
- FedEx 1406, DC-10, Boston, MA
- FedEx protection system
- UPS protection system

12. External Hazards That Can Impact Aircraft
- Classification of energetic/hazardous materials
- Deflagration vs. Detonation
- Detonation of Improvised Explosive Devices
- Air blast from explosives
- Internal explosions (Pan Am 103, B747, Lockerbie, Scotland)
- FAA full-scale explosive tests
- Structural response: local v. global deformation
- Oxygen generator fire (ValuJet 592, DC-9 Everglades, Miami Dade Count, Florida)
- Shoulder mounted missile (DHL A300, Baghdad, Iraq)

13. Fire Detection and Suppression Systems
- Pros and cons of various detector types
- Halon replacement agents, clutter effects
- Onboard fire suppression
- Ground-based suppression

14. Aircraft Accident Investigation Process
- Regulatory vs. investigative roles (NTSB, FAA)
- Anatomy of a fire accident; accident precursors
- Forensic tools
- Timeline and pathline reconstruction
- Critical tests and modeling
- Accident vs. incident databases
- Contributory human factors

15. Summary of Fire/Explosion Pattern Recognition
- In-flight vs. ground fires
- Explosives vs. fuel vapor explosions
- Pre- vs. post-crash fires
- Structural failures identification
- NFPA 921
- Lessons learned

Discussions are carried throughout the course.